skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chung, Lawrence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As big data becomes an important part of business analytics for gaining insights about business practices, the quality of big data is an essential factor impacting the outcomes of business analytics. Although this is quite challenging, conceptual modelling has much potential to solve it since the good quality of data comes from good quality of models. However, existing data models at a conceptual level have limitations to incorporate quality aspects into big data models. In this paper, we focus on the challenges cause by Variety of big data propose IRIS, a conceptual modelling framework for big data models which enables us to define three modelling quality notions – relevance, comprehensiveness, and relative priorities and incorporate such qualities into a big data model in a goal-oriented approach. Explored big data models based on the qualities are integrated with existing data grounded on three conventional organizational dimensions creating a virtual big data model. An empirical study has been conducted using the shipping decision process of a worldwide retail chain, to gain an initial understanding of the applicability of this approach. 
    more » « less